
Designing Classes

Check out DesigningClasses from SVN

It starts with good classes…

 Come from nouns in the problem description

 May…
◦ Represent single concepts

 Circle, Investment

◦ Be abstractions of real-life entities

 BankAccount, TicTacToeBoard

◦ Be actors

 Scanner, CircleViewer

◦ Be utilities

 Math

Q1

 Can’t tell what it does from its name

◦ PayCheckProgram

 Turning a single action into a class

◦ ComputePaycheck

 Name isn’t a noun
◦ Interpolate, Spend

Q2

 Cohesion

 Coupling

 A class should represent a single concept

 Public methods and constants should be
cohesive

 Which is more cohesive?

CashRegister

double NICKEL_VALUE
double DIME_VALUE

double QUARTER_VALUE

void add(int nickels, int
dimes, int quarters)

…

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()
Q3

 When one classes requires another class to
do its job, the first class depends on the
second

 Shown on UML
diagrams as:
◦ dashed line

◦ with open arrowhead

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()
Q4

 Lots of dependencies == high coupling

 Few dependencies == low coupling

 Which is better? Why?

Q5

 High cohesion

 Low coupling

 Accessor method: accesses information
without changing any

 Mutator method: modifies the object on
which it is invoked

Q6

 Accessor methods are very predictable
◦ Easy to reason about!

 Immutable classes:
◦ Have only accessor methods

◦ No mutators

 Examples: String, Double

 Is Rectangle immutable?

 Easier to reason about, less to go wrong

 Can pass around instances “fearlessly”

Q7

 Side effect: any modification of data

 Method side effect: any modification of data
visible outside the method
◦ Mutator methods: side effect on implicit parameter

◦ Can also have side effects on other parameters:

 public void transfer(double amt, Account other)

{

this.balance -= amt;

other.balance += amt;

}

Avoid this if you can! Q8

See HW12

Work in groups of three or
four on the whiteboards

